CuY2Ti4O12 (CYTO) crystalline ceramic was successfully prepared through semi-wet route. The phase formation of CYTO ceramic was confirmed by powder X-ray diffraction studies with minor secondary phases formation of Y2O3 and Cu2Ti2O5. In the higher frequency section, the dielectric permittivity and tangent loss are temperature independent, whereas in the lower frequency section, these properties are temperature dependent. The dielectric constant of CYTO was determined as 1.2 x 104 at 100 Hz and 500 K. The dielectric loss of CYTO ceramic was found 0.75 at 10 kHz and 423 K. The dielectric constant and tangent loss both reduce with rising frequency in the lower frequency regions, while these are almost constant in the higher frequency regions. Impedance properties were used to check the grain and grain boundary phenomena in this ceramic. The presence of temperature dependent Maxwell-Wagner type relaxation was established by Impedance investigation of CYTO ceramic.
In this manuscript, We have reported the synthesis and characterization of Mg-doped and un-doped BCTO ceramic (Bi2/3Cu3-xMgxTi4O12, x=0, 0.05, 0.1 and 0.2) sintered at 1173 K for 8 h, which have been prepared by the semi-wet route. The Single-phase formation of ceramic was approved by the XRD pattern. The Microstructural properties were studied by TEM. The samples were characterized by dielectric and impedance spectroscopic properties. The dielectric constant (εr) was calculated to be 3024 for BCTO ceramics at 423 K and 100Hz. The tangent loss (tan δ) value was calculated to be 0.45 for BCTO ceramic at 423 K and 10 kHz. The internal Barrier Layer Capacitance (IBLC) mechanism was responsible for the high value of the dielectric constant.. It was observed from Impedance studies that there was the existence of the Maxwell-Wagner form of relaxation in the ceramics. In the temperature range 300-500 K, the Bi2/3Cu3-xMgxTi4O12 (where x=0, 0.05, 0.1, 0.2) ceramic follows Arrhenius behavior with an almost single slope. Pervoskite material plays a significant role in the biosensing field like DNA hybridization. This research provided a newtype and promising perovskite for the development of efficient biosensors.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.