An efficient face-recognition algorithm is proposed, which not only possesses the advantages of linear subspace analysis approaches—such as low computational complexity—but also has the advantage of a high recognition performance with the wavelet-based algorithms. Based on the linearity of Gabor-wavelet transformation and some basic assumptions on face images, we can extract pseudo-Gabor features from the face images without performing any complex Gabor-wavelet transformations. The computational complexity can therefore be reduced while a high recognition performance is still maintained by using the principal component analysis (PCA) method. The proposed algorithm is evaluated based on the Yale database, the Caltech database, the ORL database, the AR database, and the Facial Recognition Technology database, and is compared with several different face recognition methods such as PCA, Gabor wavelets plus PCA, kernel PCA, locality preserving projection, and dual-tree complex wavelet transformation plus PCA. Experiments show that consistent and promising results are obtained.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.