We show that by using the non-classical two-mode squeezed vacuum (TMSV) to illuminate an object, quantum correlations contribute to a detectable enhancement even under regimes of high signal loss and background thermal noise. We also consider a realistic measurement scenario with click detectors, along with sequential Bayesian inference; a single click on one mode of the TMSV produces a vacuum removed thermal state which enhances the probability of subsequent click detection.
We describe a protocol in which we detect intercept-resend jamming of imaging and can reverse its effects. The security is based on control of the polarization states of photons that are sent to interrogate an object and form an image at a camera. The scheme presented here is a particular implementation of a general anti-jamming protocol established by Roga and Jeffers in Ref. 5. It is applied here to imaging by photons with partially distinguishable polarisation states. The protocol in this version is easily applicable as only single photon states are involved, however the efficiency is traded off against the intrusion detectability because of a leak of information to the intruder.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.