Magnonics represents a promising alternative to conventional electronics for the development of energy efficient computing platforms. In this context, the nanoscale engineering of spin textures is highly appealing for the development and realization of new nanomagnonic device concepts. Here, we show that reconfigurable nanopatterned spin textures can be used to manipulate spin waves. Magnetic domains and domain walls are written by thermally assisted magnetic scanning probe lithography (tam-SPL) in exchange bias systems. In such structures, we demonstrate through microfocused Brillouin Light Scattering and time resolved scanning transmission X-ray microscopy measurements, the channeling and propagation of confined spin waves. This work opens the way to the use of engineered spin-textures as building blocks of magnonics computing devices.
The search of novel tools controlling the physical and chemical properties of matter at the nanoscale is crucial for developing next-generation integrated systems, with applications ranging from computing to medicine. Here, we show that thermal scanning probe lithography (t-SPL) can be a flexible tool for manipulating with nanoscale precision the surface properties of a wide range of specifically designed systems. In particular, we show that via t-SPL, we pattern nanoscale chemical patterns on polymeric substrates, which are then used to specifically bind extracellular matrix (ECM) proteins to the polymer surface. We demonstrate that the concentration of immobilized proteins can be controlled by varying the tip temperature, so that nanoscale protein gradients can be created. On a different system, we show that, by performing t-SPL on a thin film magnetic multilayer, in an external magnetic field, we are able to write reversibly magnetic patterns with arbitrarily oriented magnetization and tunable magnetic anisotropy. This demonstrates that t-SPL represents a novel, straightforward and extremely versatile method for the nanoscale engineering of the physicalchemical properties in a wide variety of materials.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.