Helmet wearing is a major concern for the safety and protection of people on the construction site. Statistic data demonstrate that injuries and accidents occur mainly due to not following prescribed procedures, i.e., not wearing helmet. Camera-based surveillance system can conduct online monitoring task to detect such abnormalities through captured images with image processing system analysis. Although deep learning-based method can achieve higher image identification performance, it requires extensive hardware support of the computational resources. Therefore, it is imperative to design a lightweight network with lower hardware requirement to address such problem. In this paper, a GhostNet, YOLOv5 and a lightweight network are combined to design a model to analyze the image for online monitoring with faster processing speed. The performance of the proposed model is compared with those of the mainstream lightweight models. Experimental results have demonstrated that the proposed model has higher detection accuracy and flexible adaptability.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.