An objective method to calibrate the spatial color resolution (SCR) of a color charge-coupled device (CCD) is provided. The experimental prototype contains a target generation system, a test platform, and an analytical processing system. The target generation system creates colors with an adjustable light source and two complementary resolution panels (each one has target bars). The test platform aims at creating images through adjusting parameters of a light source of the target generation system. And the analytical processing system is used to process images to evaluate the SCR of a color CCD. We focus on the third module and utilize the minimum detectable color difference (MDCD) and the minimum resolvable color difference (MRCD) to evaluate the SCR. In the process of data collecting, we first set the two channels (one is foreground channel and the other is background channel) of a generation system the same color and then gradually change wavelength of the foreground channel until the foreground image is slightly visible. As it is difficult to let the ratio of detectable pixels of target bars just meet the requirements of the MDCD and the MRCD by only adjusting the wavelength, we adopt the general regression neural network to estimate the two indicators and the maximum estimation error of which are within 6%. In order to deal with more complex scenarios with brightness and saturation change, an image augmentation network (a modified generative adversarial network) is applied to generate synthetic images, which cannot be easily captured by our prototype due to limits of the light source. The experimental results show that the estimation error of MDCD and MRCD is decreased to almost 1%. The method is a human-eye independent way and performs well in selecting the right kind of a color CCD, which guarantees the reliability and security of the visual detection and recognition system.
With the growing demand for monitoring length and channel number of the fully distributed optical fiber sensors (DOFSs), the amount of sensing data is increasing rapidly, and there will be a heavy pressure for the massive data storage and transmission. In this paper, two lossless compression algorithms of Lempel-Ziv-Welch (LZW) and Huffman are comparatively studied to effectively compress the huge amount of data of typical DOFSs, e.g. Φ -OTDR, POTDR, and BOTDA systems. The comparison results show that the LZW based on dictionary has a better performance in the consuming time and compression ratio for the DOFS data.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.