In the realm of picture forensics, it might be difficult to find and locate an image-splicing forgery. To improve the accuracy of the picture forensic evaluation, we introduce a dual encoder network (DAE-Net) with an efficient channel attention (ECA) module. The ECA module creates a fusion approach with an attention mechanism that enables the model to concentrate on local objects’ tampering characteristics and increases the accuracy of multi-region tampering identification. We suggest combining a dual-coding network with a multi-scale dilated convolutional feature fusion module to better detect small target tampering zones. Experimental evidence suggests that DAE-Net outperforms state-of-the-art methods. The attack experiments also demonstrate the DEA-Net model’s stability and noise resistance.
Semantic scene segmentation has become an important application in computer vision and is an essential part of intelligent transportation systems for complete scene understanding of the surrounding environment. Several methods based on convolutional neural networks have emerged, but they have some problems, including small-scale target loss, inaccurate detailed region segmentation, and boundary category confusion. Using shallow features, we exploit the capabilities of global context information according to the theory of pyramids. A weighted pyramid feature fusion module is constructed to fuse the feature maps of different scales generated by the backbone network, and the proportion of feature fusion is dynamically updated by trainable parameters. After that, a self-attention mechanism is introduced to discover information about spatial channel interdependencies. Finally, the atrous spatial pyramid pooling module of the DeepLabv3+ network is improved by connecting the atrous convolution with different dilation rates at the receptive field. The experimental results show 4.1% mean pixel accuracy and 3.92% mean intersection over union improvements in the proposed method compared with the DeepLabv3+, and the result of semantic segmentation is more accurate.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.