Natural images inevitably suffer from spatially variant blur caused by the relative motion between a camera and objects. We present an effective and efficient patch-wise edge-enhanced image regularization and a robust kernel similarity constraint to perform an accurate kernel estimation from coarse-to-fine iterations. The proposed adaptive regularization introduces a gradient magnitude penalty function into total variation to preserve and enhance salient edges while smoothing out harmful subtle structures. In addition, the similarity constraint is engaged in each patch without camera rotation effects, ensuring that the erroneous kernels can be identified by measuring the similarity among the kernels of neighbor patches and be replaced with the well-estimated ones. After obtaining accurate kernels, numerous nonblind deblurring methods can be applied to restore an image. Numerical experiments demonstrate that the proposed algorithm performs favorably without ringing artifacts and possesses high processing efficiency for natural nonuniform blurred images.
In order to improve the accuracy of polarization target detection, the multi-parameter polarization contrast model is proposed after analyzing the typical polarization features of the polarization images. It utilizes both of the polarization degree and the polarization angle parameters. Then the fast polarizer angle detection method is designed according to this model to calculate and drive the motor to rotate the polarizer to the most appropriate deviation angle so as to maximize the contrast between the target and the background. Experimental results show that the proposed method can improve the contrast between the target and the background in the polarized image significantly, which makes the polarization detection more efficiently and lays a foundation for detecting the moving targets.
During space reconnaissance applications, edge detection from remote sensing imagery plays an important role in the target recognition processing. However, traditional edge detection methods usually only utilize the high-frequency information in one image. Since low-frequency elements may be aliasing with high-frequency parts, the edges extracted may be unconnected under complex topography, different objects and imaging conditions. This paper proposes a novel image edge detection method based on Non-Subsampled Contourlet Transform (NSCT) to keep the object boundary continuously. It transforms the image into Contourlet domain in both high-frequency and low-frequency sub-bands respectively. Depending on the feature of flexible directivity reservation of an image during NSCT, the further edge extraction consists of 3 steps: firstly, the elements of the high-frequency coefficient matrix in Contourlet domain are filtered with high values left using adaptive thresholds. Then the low-frequency edge information is extracted via Canny operator from the low-frequency sub-band information. Finally, to achieve a more consistent edge image, the low-frequency edge image is achieved according to the low-frequency matrix and adopted to compensate the high-frequency image with the isolated noise points eliminated as well. The numerical simulation and practical test results show the higher effectiveness and robustness of the proposed algorithm when comparing with the classical edge detectors, such as Sobel operator, Canny operator, Log operator and Prewitt operator, etc.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.