Electron Bombardment Active Pixel Sensor (EBAPS) can work in photosensitive mode and electrical sensitive mode due to the special doping mode of CMOS. In both operating modes, after the target signal passes through the photoelectric conversion, gain and readout process of the EBAPS device, the readout signal needs to exceed the noise generated by the device to ensure the distinguishable output image. However, in the process of conversion and multiplication of the target signal, noise will inevitably be introduced. The noise will be amplified along with the signal, causing distortion or attenuation of the original signal, thus interfering with the quality of the output image and affecting human observation. Therefore, it is necessary to study the noise characteristics of EBAPS as a key factor affecting the imaging quality. For the development of high-performance EBAPS devices, this paper focuses on the noise characteristics of detection and imaging under different operating modes. By analyzing the working principle of EBAPS devices in different working modes, the noise sources that affect the imaging quality are obtained. In photosensitive mode, the noise of EBAPS is consistent with that of ordinary CMOS image sensor. These noises are mainly affected by CMOS process level, ambient temperature, working time and other factors, and can usually be removed by image processing algorithms. In the electric sensitive mode, the noise of EBAPS mainly comes from GaAs photocathode and the electron multiplication process of CMOS. These noises can be suppressed by reducing the working temperature, improving the surface defects and cleanliness during the chip preparation, and improving the doping process of the substrate. According to the noise generation mechanism, the noise suppression methods are proposed to obtain a high SNR digital output image. The above research provides some references for the following research on noise characteristics and noise reduction methods of digital low light level devices.
KEYWORDS: Optical filters, Technology, Night vision, Image filtering, Electron multiplying charge coupled devices, Design and modelling, Cameras, Image processing, Digital filtering, Color imaging
Advanced night vision technology can realize the "one-way transparent" situation to the enemy in night battle, which plays a decisive role in local confrontation. However, traditional high vacuum and low light level night vision devices based on analog signals have inherent functional limitations of not being able to share in real time and enhance processing. Meanwhile, in order to give full play to the visual characteristics of human eyes, new digital and colorized night vision imaging devices have become the mainstream direction of current development. Based on the basic principle of low light level devices, this paper summarizes the research of digital color low light level technology and makes technical prospects.
After more than 50 years of development, CMOS image sensor has become the most mainstream image sensor. At present, the most used solid-state imaging devices directly image optical signals through the internal photoelectric effect, while the EBCMOS(electron bombardment CMOS) is more popular in the military field. In order to achieve low illumination and high quality image detector, people put forward higher requirements for the minimum operating illumination, fixed pattern noise, dynamic working range and other indicators of CMOS image sensor, and dark current is an important factor affecting these indicators. There are many literatures about the research of dark current in CMOS image sensor, but there is no systematic report on the research of dark current in CMOS image sensor. This paper systematically summarizes the research situation of dark current in CMOS image sensor. In this paper, the mechanism of dark current generation of CMOS image sensor is summarized firstly. Secondly, the influence of structure design, fabrication process and working environment on the dark current index of CMOS image sensor is summarized respectively, and the research situation of dark current compensation method is summarized again. Finally, combining with the generation mechanism of dark current of CMOS image sensor, the formation mechanism and influencing factors of dark current of new proposed electron bombardment CMOS(EBCMOS) image detector are analyzed.
In view of the attenuation of performance index of self-developed EBAPS detector principle sample with the increase of working time and working temperature, a test method is designed from the angle of dark current noise and working temperature change, and the corresponding relationship between dark current and working temperature of EBAPS device is tested. Because EBAPS detector combines the characteristics of solid-state and vacuum micro-optical devices, it inherits the characteristics of dark current of CMOS chip changing with temperature. With the increase of temperature, dark current of CMOS chip increases rapidly. The rise of dark current will directly affect the equivalent background illumination of EBAPS detector. If the effective signal received by the detector is lower than the dark current noise signal at low illumination, that is, the effective signal is lower than the equivalent background illumination; the effective signal will be obscured in the noise signal, leading to the detector not working properly. In view of the characteristics of EBAPS detector, the test and calculation are also carried out. The data relations and change curves between the operating temperature, dark current and equivalent background illumination of EBAPS device are given. At the end of the paper, methods and ways to optimize the imaging performance of EBAPS detectors are presented, such as image processing algorithm, reducing the power consumption of readout circuit, and optimizing the dark current suppression process of EBAPS devices.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.