The visible emission line coronagraph (VELC) on board the Aditya-L1 mission is an internally occulted reflective coronagraph. It is capable of simultaneous observations of the solar corona in imaging, spectroscopic, and spectropolarimetric modes very close to the solar limb, to 1.05 R ⊙ (R ⊙ – solar radius). Primary mirror (M1) of the VELC receives the light from both the solar disk and the corona up to 3 R ⊙ . In the VELC, occultation happens at the focus of the M1. Secondary mirror (M2) with a central hole size equal to 1.05 R ⊙ is mounted at the focal plane of M1 and serves the purpose of an internal occulter. To meet the proposed science goals of the payload, M1 surface should be super polished with good imaging characteristics. This results in stringent requirements of the surface figure and microroughness on the mirror surface. M1 is an off-axis parabola, so achieving the demanding requirements is quite challenging. At the same time, testing of M1 after development is crucial for evaluating its performance. This paper provides the details of the optical metrology tests carried out on M1 along with the results obtained and their implications on the performance of the VELC.
We present an experimental technique to investigate the effect of speckle pattern illumination on holographic recording and reconstruction. In this work, we apply speckle field illumination for digital holography and present our preliminary experimental results. The technique is applied for recording and reconstruction of the complete wavefronts and compare with conventional holographic approach. This technique is expected to play an important role in studying the polarization sensitive materials and opens up a new approach for holographic imaging with high field of view for polarization objects.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.