Unlike the conventional buried-grating distributed feedback lasers, those using surface gratings can be fabricated in a
single growth and processing sweep. With the surface gratings resulting from lateral corrugations of the ridge-waveguide
the epitaxial overgrowth is avoided, which simplifies the device fabrication and reduces the device cost. However, the
laterally-coupled distributed feedback lasers have multiple particularities arising from the distinct grating interaction with
the optical field. These particularities, especially the effects of grating geometry, including the limitations imposed by the
fabrication technology, are analyzed in the paper.
The conventional distributed feedback (DFB) edge-emitting lasers with buried gratings require two or more epitaxial
growth steps. To avoid the problematic overgrowth we have used laterally-corrugated ridge-waveguide surface gratings,
which also enable easy integration of the resulting laterally-coupled DFB (LC-DFB) lasers with other devices and are
applicable to different materials, including Al-containing ones. The paper presents the modeling and design
particularities of LC-DFB lasers, the fabrication process, involving a highly productive and cost-effective UVnanoimprint
lithography technique, and the characteristics obtained for the LC-DFB lasers fabricated from GaAs-, GaSband
InP-based epiwafers. The first batches of GaAs-based LC-DFB lasers, emitting at 894 nm, GaSb-based LC-DFB
lasers emitting at 1.946 μm and InP-based LC-DFB lasers, emitting at 1.55 μm had relatively low threshold currents, a
high side-mode-suppression-ratio and exhibited linewidths in the range of 1 MHz and below, showing that the LC-DFB
lasers are an effective low-cost alternative for the conventional buried-grating DFB lasers.
The conventional distributed feedback and distributed Bragg reflector edge-emitting lasers employ buried gratings,
which require two or more epitaxial growth steps. By using lateral corrugations of the ridge-waveguide as surface
gratings the epitaxial overgrowth is avoided, reducing the fabrication complexity, increasing the yield and reducing the
fabrication cost. The surface gratings are applicable to different materials, including Al-containing ones and can be easily
integrated in complex device structures and photonic circuits. Single-contact and multiple contact edge-emitting lasers
with laterally-corrugated ridge waveguide gratings have been developed both on GaAs and InP substrates with the aim to
exploit the photon-photon resonance in order to extend their direct modulation bandwidth. The paper reports on the
characteristics of such surface-grating-based lasers emitting both at 1.3 and 1.55 μm and presents the photon-photon
resonance extended small-signal modulation bandwidth (> 20 GHz) achieved with a 1.6 mm long single-contact device
under direct modulation. Similarly structured devices, with shorter lengths are expected to exceed 40 GHz small-signal
modulation bandwidth under direct modulation.
The paper presents an optimization analysis of the yield of high-speed 1310 nm distributed feedback lasers. Simulation
results are showcased and design principles for achieving the highest possible yield of high-speed single mode devices
with the side mode suppression ratio of more than 40 dB and the modulation bandwidth of over 20 GHz are outlined.
The effects of the integrated Bragg grating characteristics and end-mirror reflectivities on the crucial parameters for
high-speed operation are studied and guidelines for high-speed device fabrication are given.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.