The Single Aperture Large Telescope for Universe Studies (SALTUS) probe mission will provide a powerful far-infrared (far-IR) pointed space observatory to explore our cosmic origins and the possibility of life elsewhere. The observatory employs an innovative deployable 14-m aperture, with a sunshield that will radiatively cool the off-axis primary to <45 K. This cooled primary reflector works in tandem with cryogenic coherent and incoherent instruments that span 34- to 660-μm far-IR range at both high and moderate spectral resolutions. The mission architecture, using proven Northrop Grumman designs, provides visibility to the entire sky every 6 months with ∼35% of the sky observable at any one time. SALTUS’s spectral range is unavailable to any existing ground or current space observatory. SALTUS will have 16× the collecting area and 4× the angular resolution of Herschel and is designed for a lifetime of ≥5 years. The SALTUS science team has proposed a Guaranteed Time Observations program to demonstrate the observatory’s capabilities and, at the same time, address high-priority questions from the Decadal survey that align with NASA’s Astrophysics Roadmap. With a large aperture enabling high spatial resolution and sensitive instruments, SALTUS will offer >80% of its available observing time to Guest Observer programs, providing the science community with powerful capabilities to study the local and distant universe with observations of 1000s of diverse targets such as distant and nearby galaxies, star-forming regions, protoplanetary disks, and solar system objects.
The Slicer Combined with an Array of Lenslets for Exoplanet Spectroscopy (SCALES) will be the first facility-class integral field spectrograph (IFS) to operate between 2-5 microns. Expected to see first light at W. M. Keck Observatory in 2025, SCALES will extend the parameter space of directly imaged exoplanets to those that are colder, and thus older. SCALES will perform high-contrast imaging of these objects and other targets including protoplanetary disks, Solar System objects, and supernovae. Interferometric techniques such as non-redundant aperture masking (NRM) have been demonstrated to improve spatial resolution at high contrasts. Aperture masking turns a telescope into an interferometer by blocking the pupil with an opaque mask with some number of circular holes. Here we present the final designs for the non-redundant masks that will be integrated into SCALES. We outline their design, manufacturing, characterization, and integration processes. We also present the injection and recovery of several planet and disk companion models into mock SCALES science frames to assess the performance of the selected designs.
We present an overview of the Milky Way (MW) and nearby galaxy science case for the Single Aperture Large Telescope for Universe Studies (SALTUS) far-infrared (IR) NASA probe-class mission concept. SALTUS offers enormous gains in spatial resolution and spectral sensitivity over previous far-IR missions due to its cold (<40 K) 14-m primary mirror. Key MW and nearby galaxy science goals for SALTUS focus on understanding the role of star formation in feedback in the local universe. In addition to this science case, SALTUS would open a new window to galactic and extragalactic communities in the 2030s, enabling fundamentally new questions to be answered, and would be a far-IR analog to the near- and mid-IR capabilities of the James Webb Space Telescope. We summarize the MW and nearby galaxy science case and plans for notional observing programs in both guaranteed and guest (open) times.
We present an overview of the high-redshift extragalactic science case for the Single Aperture Large Telescope for Universe Studies (SALTUS) far-infrared (IR) National Aeronautics and Space Administration probe-class mission concept. Enabled by its 14-m primary reflector, SALTUS offers enormous gains in spatial resolution and spectral sensitivity over previous far-IR missions. SALTUS would be a versatile observatory capable of responding to the scientific needs of the extragalactic community in the 2030s and a natural follow-on to the near- and mid-IR capabilities of JWST. The key early-universe science goals for SALTUS focus on understanding the role of galactic feedback processes in regulating galaxy growth across cosmic time and charting the rise of metals and dust from the early universe to the present. We summarize these science cases and the performance metrics most relevant for high-redshift observations.
SCALES (Slicer Combined with Array of Lenslets for Exoplanet Spectroscopy) is a 2 micron to 5 micron high-contrast lenslet-based Integral Field Spectrograph (IFS) designed to characterize exoplanets and their atmospheres. The SCALES medium-spectral-resolution mode uses a lenslet subarray with a 0.34 x 0.36 arcsecond field of view which allows for exoplanet characterization at increased spectral resolution. We explore the sensitivity limitations of this mode by simulating planet detections in the presence of realistic noise sources. We use the SCALES simulator scalessim to generate high-fidelity mock observations of planets that include speckle noise from their host stars, as well as other atmospheric and instrumental noise effects. We employ both angular and reference differential imaging as methods of disentangling speckle noise from the injected planet signals. These simulations allow us to assess the feasibility of speckle deconvolution for SCALES medium resolution data, and to test whether one approach outperforms another based on planet angular separations and contrasts.
The Slicer Combined with Array of Lenslets for Exoplanet Spectroscopy (SCALES) is an under-construction thermal infrared high-contrast integral field spectrograph that will be located at the W. M. Keck Observatory. SCALES will detect and characterize planets that are currently inaccessible to detailed study by operating at thermal (2 μm to 5 μm) wavelengths and leveraging integral-field spectroscopy to readily distinguish exoplanet radiation from residual starlight. SCALES’ wavelength coverage and medium-spectral-resolution (R ∼ 4,000) modes will also enable investigations of planet accretion processes. We explore the scientific requirements of additional custom gratings and filters for incorporation into SCALES that will optimally probe tracers of accretion in forming planets. We use ray-traced hydrogen emission line profiles (i.e., Brγ, Brα) and the SCALES end-to-end simulator, scalessim, to generate grids of high-fidelity mock datasets of accreting planetary systems with varying characteristics (e.g., Teff, planet mass, planet radius, mass accretion rate). In this proceeding, we describe potential specialized modes that best differentiate accretion properties and geometries from the simulated observations.
The Slicer Combined with Array of Lenslets for Exoplanet Spectroscopy (SCALES) is a 2 μm to 5 μm, high-contrast Integral Field Spectrograph (IFS) currently being built for Keck Observatory. With both low (R ≲ 250) and medium (R approximately 3500 to 7000) spectral resolution IFS modes, SCALES will detect and characterize significantly colder exoplanets than those accessible with near-infrared (approximately 1 μm to 2 μm) high-contrast spectrographs. This will lead to new progress in exoplanet atmospheric studies, including detailed characterization of benchmark systems that will advance the state of the art of atmospheric modeling. SCALES’ unique modes, while designed specifically for direct exoplanet characterization, will enable a broader range of novel (exo)planetary observations as well as galactic and extragalactic studies. Here we present the science cases that drive the design of SCALES. We describe an end-to-end instrument simulator that we use to track requirements and show simulations of expected science yields for each driving science case. We conclude with a discussion of preparations for early science when the instrument sees first light in approximately 2025.
The Slicer Combined with an Array of Lenslets for Exoplanet Spectroscopy (SCALES) instrument is a lenslet-based integral field spectrograph that will operate at 2 to 5 microns, imaging and characterizing colder (and thus older) planets than current high-contrast instruments. Its spatial resolution for distant science targets and/or close-in disks and companions could be improved via interferometric techniques such as sparse aperture masking. We introduce a nascent Python package, NRM-artist, that we use to design several SCALES masks to be non-redundant and to have uniform coverage in Fourier space. We generate high-fidelity mock SCALES data using the scalessim package for SCALES’ low spectral resolution modes across its 2 to 5 micron bandpass. We include realistic noise from astrophysical and instrument sources, including Keck adaptive optics and Poisson noise. We inject planet and disk signals into the mock datasets and subsequently recover them to test the performance of SCALES sparse aperture masking and to determine the sensitivity of various mask designs to different science signals.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.