Myoglobin is a protein that is expressed quite unevenly among different cell types. Nevertheless, it has been widely acknowledged that the Fe3+ state of myoglobin, metmyoglobin (metMb) has a broad functional role in metabolism, oxidative/nitrative regulation and gene networks. Accordingly, real-time monitoring of oxygenated, deoxygenated and metMb proportions- or, more broadly, of the mechanisms by which metMb is formed, presents a promising line of research. We had previously introduced a Förster resonance energy transfer (FRET) method to read out the deoxygenation/oxygenation states of myoglobin, by creating the targetable oxygen (O2) sensor Myoglobin-mCherry. In this sensor, changes in myoglobin absorbance features that occur with lost O2 occupancy -or upon metMb production control the FRET rate from the fluorescent protein to myoglobin. When O2 is bound, mCherry fluorescence is only slightly quenched, but if either O2 is released or met is produced, FRET will increase- and this rate competing with emission reduces both emission yield and lifetime. Nitric oxide (NO) is an important signal (but also a toxic molecule) that can oxidize myoglobin to metMb with absorbance increases in the red visible range. mCherry thus senses both met and deoxygenated myoglobin, which cannot be easily separated at hypoxia. In order to dissect this, we treat cells with NO and investigate how the Myoglobin-mCherry lifetime is affected by generating metMb. More discriminatory power is then achieved when the fluorescent protein EYFP is added to Myoglobin-mCherry, creating a sandwich probe whose lifetime can selectively respond to metMb while being indifferent to O2 occupancy.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.