The resolution parameter of CCD is the factor which limits the spatial resolution of optoelectronic system. The using of high-resolution CCD is not always possible, especially for measurements in IR wavelength (1350nm) band. The purpose of given work is increasing the spatial resolution of the newly introduced Medianfield method which is focused on beam profile measurements for fiber-chip coupling systems by means of processing low-resolution images sequences. The results of numeric experiments show that the given image restoration method makes it possible the super-resolution restoration of images for possible transmission of information about high spatial frequencies, through diffraction limited optical system. Theoretical assessment allows to predict required conditions for this transmission. Results of experiments for super-resolution images which differ by sub-pixel shift show possibility of theoretical prediction optimal parameters for image (signal) restoration (required number of processed images, point spread function and etc.)
In this paper we present the fabrication of optical mode field adaptors at the end of single mode and multimode optical fibers, which act as a micro lens, for fiber optical communications devices, capable up to 40Gbit/s data. The mode field adaptors were used to focus the optical output field (1550nm wavelength) of the fiber to receiver and transmitter OEICs. Based on the measurement of a singlemode fiber in accordance with ITU Recommendation G.652 the optical mode fields are measured in a new set-up, which is demonstrated and discussed in comparison to conventional methods. The work was performed in cooperation with the Heinrich-Hertz-Institute in Berlin.
In this paper we present the fabrication of optical mode field adaptors at the end of single mode and multimode optical fibers, which act as a micro lens, for fiber optical communications devices, capable up to 40Gbit/s data. The mode field adaptors were used to focus the optical output field (1550nm wavelength) of the fiber to receiver and transmitter OEICs. Based on the measurement of a singlemode fiber in accordance with ITU Recommendation G.652 the optical mode fields are measured in a new set-up, which is demonstrated and discussed in comparison to conventional methods. The work was performed in cooperation with the Heinrich-Hertz-Institute in Berlin.
In this paper we present the fabrication of optical mode field adaptors for fiber optical communications devices in combination with a new method for spot size measurement for single mode optical components. At the end of standard single mode fibers we have manufactured reproducible mode field transformers with diameters from 5 μm to 90 μm. Additionally, we present a new planar optical field characterization method. BPM simulations are performed to predict the spot sizes at different fiber end diameters. Based on the measurement of a singlemode fiber in accordance with ITU Recommendation G.652 the efficiency is demonstrated and discussed.
In this paper we present the fabrication of optical mode field adaptors for fiber optical communications devices in combination with a new method for spot size measurement for single mode optical components. At the end of standard single mode fibers we have manufactured reproducible mode field transformers with diameters from 5 μm to 90 μm. Additionally, we present a new planar optical field characterization method. BPM simulations are performed to predict the spot sizes at different fiber end diameters. Based on the measurement of a singlemode fiber in accordance with ITU Recommendation G.652 the efficiency is demonstrated and discussed.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.