A new-generation full-frame 36x48 mm2 48Mp CCD image sensor with vertical anti-blooming for professional digital
still camera applications is developed by means of the so-called building block concept. The 48Mp devices are formed
by stitching 1kx1k building blocks with 6.0 µm pixel pitch in 6x8 (hxv) format. This concept allows us to design four
large-area (48Mp) and sixty-two basic (1Mp) devices per 6" wafer. The basic image sensor is relatively small in order to
obtain data from many devices. Evaluation of the basic parameters such as the image pixel and on-chip amplifier
provides us statistical data using a limited number of wafers. Whereas the large-area devices are evaluated for aspects
typical to large-sensor operation and performance, such as the charge transport efficiency. Combined with the usability
of multi-layer reticles, the sensor development is cost effective for prototyping.
Optimisation of the sensor design and technology has resulted in a pixel charge capacity of 58 ke- and significantly
reduced readout noise (12 electrons at 25 MHz pixel rate, after CDS). Hence, a dynamic range of 73 dB is obtained.
Microlens and stack optimisation resulted in an excellent angular response that meets with the wide-angle photography
demands.
This paper presents an overview of the specific challenges that need to be overcome to make very-large CCD and CMOS
imagers, and presents some recent innovations in this area. The complete development chain is described: research,
production and industrialization. It will be shown that by innovative design and technology concepts, high-quality very large
area CCD and CMOS imagers can be made, even up to wafer size (6" for CCD, 8" for CMOS).
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.