The absolute power of the Linac Coherent Light Source pulses has been measured accurately in the hard X-ray beamline by using simultaneously two detectors: an X-ray Gas Monitor Detector (XGMD) in tandem with a radiometer. From these measurements, we were also able to characterize and calibrate in details our sets of beamline attenuators, in addition to extending an absolute calibration for our beamline intensity monitors. Similarly, we demonstrate that commercial optical power meter has a response in the hard X-ray regime, that can be cross-correlated with the absolute power of the LCLS beam.
At the Lawrence Livermore National Laboratory (LLNL) we have engineered a silicon prototype sample that can be used to reflect focused hard x-ray photons at high intensities in back-scattering geometry.1 Our work is motivated by the need for an all-x-ray pump-and-probe capability at X-ray Free Electron Lasers (XFELs) such as the Linac Coherent Light Source (LCSL) at SLAC. In the first phase of our project, we exposed silicon single crystal to the LCLS beam, and quantitatively studied the x-ray induced damage as a function of x-ray fluence. The damage we observed is extensive at fluences typical of pump-and-probe experiments. The conclusions drawn from our data allowed us to design and manufacture a silicon mirror that can limit the local damage, and reflect the incident beam before its single crystal structure is destroyed. In the second phase of this project we tested this prototype back-reflector at the LCLS. Preliminary results suggest that the new mirror geometry yields reproducible Bragg reflectivity at high x-ray fluences, promising a path forward for silicon single crystals as x-ray back-reflectors.
Development of the Europium-doped Strontium Iodide scintillator, SrI2(Eu2+), has progressed significantly in recent years. SrI2(Eu2+) has excellent material properties for gamma ray spectroscopy: high light yield (<80,000 ph/MeV), excellent light yield proportionality, and high effective atomic number (Z = 49) for high photoelectric cross-section. High quality 1.5” and 2” diameter boules are now available due to rapid advances in SrI2(Eu) crystal growth. In these large SrI2(Eu) crystals, optical self-absorption by Eu2+ degrades the energy resolution as measured by analog electronics, but we mitigate this effect through on-the-fly correction of the scintillation pulses by digital readout electronics. Using this digital correction technique we have demonstrated energy resolution of 2.9% FWHM at 662 keV for a 4 in3 SrI2(Eu) crystal, over 2.6 inches long. Based on this digital readout technology, we have developed a detector prototype with greatly improved radioisotope identification capability compared to Sodium Iodide, NaI(Tl). The higher resolution of SrI2(Eu) yields a factor of 2 to 5 improvement in radioisotope identification (RIID) error rate compared to NaI(Tl).
N. Loh, Dmitri Starodub, Lukas Lomb, Christina Hampton, Andrew Martin, Raymond Sierra, Anton Barty, Andrew Aquila, Joachim Schulz, Jan Steinbrener, Robert Shoeman, Stephan Kassemeyer, Christoph Bostedt, John Bozek, Sascha Epp, Benjamin Erk, Robert Hartmann, Daniel Rolles, Artem Rudenko, Benedikt Rudek, Lutz Foucar, Nils Kimmel, Georg Weidenspointner, Günther Hauser, Peter Holl, Emanuele Pedersoli, MengNing Liang, Mark Hunter, Lars Gumprecht, Nicola Coppola, Cornelia Wunderer, Heinz Graafsman, Filipe R. N. Maia, Tomas Ekeberg, Max Hantke, Holger Fleckenstein, Helmut Hirsemann, Karol Nass, Thomas White, Herbert Tobias, George Farquar, W. Henry Benner, Stefan Hau-Riege, Christian Reich, Andreas Hartmann, Heike Soltau, Stefano Marchesini, Sasa Bajt, Miriam Barthelmess, Lothar Strueder, Joachim Ullrich, Philip Bucksbaum, Keith Hodgson, Mathias Frank, Ilme Schlichting, Henry Chapman, Michael Bogan
Profiling structured beams produced by X-ray free-electron lasers (FELs) is crucial to both maximizing signal intensity for weakly scattering targets and interpreting their scattering patterns. Earlier ablative imprint studies describe how to infer the X-ray beam profile from the damage that an attenuated beam inflicts on a substrate. However, the beams in-situ profile is not directly accessible with imprint studies because the damage profile could be different from the actual beam profile. On the other hand, although a Shack-Hartmann sensor is capable of in-situ profiling, its lenses may be quickly damaged at the intense focus of hard X-ray FEL beams. We describe a new approach that probes the in-situ morphology of the intense FEL focus. By studying the translations in diffraction patterns from an ensemble of randomly injected sub-micron latex spheres, we were able to determine the non-Gaussian nature of the intense FEL beam at the Linac Coherent Light Source (SLAC National Laboratory) near the FEL focus. We discuss an experimental application of such a beam-profiling technique, and the limitations we need to overcome before it can be widely applied.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.