Our target at EIDEC is to study the feasibility of directed self-assembly (DSA) technology for semiconductor device manufacturing through electrical yield verification by development of such as process, material, metrology, simulation and design for DSA. We previously developed a grapho/chemo-hybrid coordinated line epitaxial process for sub-15-nm line-and-space (L/S) patterning using polystyrene-block-poly(methyl methacrylate) lamellar block copolymers (BCPs)1– 3. Electrical yield verification results showed that a 30% open yield was successfully achieved with a metal wire line length of 700 μm 4. In the next stage of the evaluation, a sub-10-nm L/S DSA patterning process based on graphoepitaxial DSA of 20-nm lamellar period organic BCPs was developed based on neutral layer and guide space width optimization. At a 30-nm guide height, problems such as BCP overflow and DSA line shorts were observed after the dry development. At a 60-nm guide height, grid-like short defects were observed under dry development shallow etch conditions and sub-10-nm L/S patterns were formed under optimized etch conditions with a suitable BCP film thickness margin. The process performance was evaluated in terms of defects and critical dimension measurements using an electron beam inspection system and critical dimension-scanning electron microscope metrology. The main DSA defects were short defects, and the spatial roughness appeared to be caused by the periodic pitches of these short defects and the guide roughness. We successfully demonstrated the fabrication of sub-10-nm metal wires consists of L/S, pad, connect and cut patterns with controlled alignment and stack structure through lithography, etching and CMP process on a 300- mm wafer using the fully integrated DSA process and damascene processing.
Si-rich poly((polyhedral oligomeric silsesquioxane) methacrylate)-b-poly(trifluoroethyl methacrylate) (PMAPOSS-b- PTFEMA) was used to form 8-nm half-pitch line and space (L/S) pattern via grapho-epitaxy. Vertical alignment of the lamellae was achieved without using either a neutral layer or top-coating material. Because PMAPOSS-b-PTFEMA forms vertical lamellae on a variety of substrates, we used two types of physical guide structures for grapho-epitaxy; one was a substrate guide and the other was a guide with an embedded under layer. On the substrate guide structure, a fine L/S pattern was obtained with trench widths equal to 3–7 periods of the lamella spacing of the block copolymer, Lo. However, on the embedded under layer guide structure, L/S pattern was observed only with 3 Lo and 4 Lo in trench width. Cross-sectional transmission electron microscope images revealed that a thick PMAPOSS layer was formed under the PMAPOSS-b-PTFEMA L/S pattern. Pattern transfer of the PMAPOSS-b-PTFEMA L/S pattern was prevented by a thick PMAPOSS layer. To achieve pattern transfer to the under layer, optimization of the surface properties is necessary.
Directed self-assembly is a candidate process for sub-15-nm patterning applications. It will be necessary to develop the DSA process fully and consider process integration to adapt the DSA process for use in semiconductor manufacturing. We investigated the reactive ion etching (RIE) process for the fabrication of sub-10-nm metal wires using the DSA process and the process integration requirements for electrical yield verification. We evaluated the process using an organic high-chi block copolymer (BCP) with a lamellar structure. One critical issue during DSA pattern transfer involves the BCP bottom connection. The BCP bottom connections could be removed without BCP mask loss by using the optimum bias power and the optimum BCP film thickness. The sub-10-nm DSA line-and-space (L/S) patterns were successfully transferred to a SiO2 layer with sufficient film thickness for the fabrication of the metal wire. We also evaluated the overlay technique used in the process. The connect patterns and cut patterns were overlaid on 10-nm trenches fabricated by the DSA process.
The perpendicularly orientated lamellar structure of the self-organized diblock copolymer is an attractive template for sub-10-nm line-and-space pattern formation. We propose a method of evaluating the neutral layer (NL) whose performance has an important bearing on the perpendicular orientation of the lamellar structure. The random copolymer of methyl methacrylate and i-butyl POSS methacrylate (MAIBPOSS) has been investigated as an NL for a polymethylmethacrylate-b-polymethacrylethylPOSS (PMMA-b-PMAIBPOSS) lamellar structure. PMMA-b-PMAIBPOSS material has the potential to form sub-10 nm line-and-space pattern, in addition to high etch selectivity due to its POSS structure. Under the free surface, PMMA-b-PMAIBPOSS film on the random copolymer layer showed horizontal orientation. However, a half-pitch of a 7-nm finger pattern structure was observed by peeling off the horizontally oriented layer. The upper portion of the PMMA-b-PMAIBPOSS film was eliminated till proximity of the random copolymer layer by CF4 gas etching. From the result, it was revealed that the PMMA-r-PMAIBPOSS works as an NL. It was confirmed that the contact angle analysis using an appropriate polymer is a suitable method for evaluation of the surface energy performance of the copolymer with the attribute of high segregation energy.
In this study, half-pitch (HP) 15 nm line-and-space (L/S) metal wires were successfully fabricated and fully integrated on a 300 mm wafer by applying directed self-assembly (DSA) lithography and pattern transfer for semiconductor device manufacturing. In order to evaluate process performances of DSA, we developed a simple sub-15 nm L/S patterning process using polystyrene-block-poly(methyl methacrylate) (PS-b-PMMA) lamellar block copolymer (BCP), which utilizes trimming resist and shallow etching spin-on-glass (SOG) as pinning guide[1]-[4]. From the results of defect inspection after SOG etch using Electron Beam (EB) inspection system, defects were classified as typical DSA defects or defects relating to DSA pattern transfer. From the evaluation of DSA L/S pattern Critical Dimension (CD), roughness and local placement error using CD-SEM, it is considered that isolated PS lines are placed at the centerline between guides and that placement of paired PS lines depends on the guide width. The control of the guide resist CD is the key to local placement error and the paired lines adjacent to the guide shifted toward the outside (0.5 nm) along the centerline of the isolated line after SOG etch. We demonstrated fabrication of HP 15 nm metal wires in trenches formed by the DSA process with reactive ion etching (RIE), followed by metal chemical vapor deposition (CVD) and chemical mechanical polishing (CMP). By SEM observation of alignment errors between the trenches and connect spaces, overlay shift patterns (-4 nm) in guide lithography mask were fabricated without intra-wafer alignment errors.
Directed self-assembly (DSA) is one of the promising candidates for next-generation lithography. We developed a novel simple sub-15 nm line-and-space (L/S) patterning process, the “coordinated line epitaxy (COOL) process,” using grapho- and chemo-hybrid epitaxy. In this study we evaluate the DSA L/S pattern transfer margin. Since defect reduction is difficult in the case of the DSA pattern transfer process, there is a need to increase the pattern transfer margin. We also describe process integration for electrical yield verification.
We proposed a new concept of “defect-aware process margin.” Defect-aware process margin was evaluated by investigating the energy difference between the free-energy of the most stable state and that of the first metastable state. The energy difference is strongly related to the defect density in DSA process. As a result of our rigorous simulations, the process margin of the pinning layer width was found to be: (1) worse when the pinning layer affinity is too large, (2) better when the background affinity has the opposite sign of the pinning layer affinity, and (3) better when the top of the background layer is higher than that of the pinning layer by 0.1L0.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.